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Simple model of a random walk with arbitrarily long memory

Arturo Berrones and Herna´n Larralde
Centro de Ciencias Fı´sicas, Uniersidad Nacional Auto´noma de Me´xico, Facultad de Ciencias, UAEMo,

Cuernavaca, Morelos, Mexico
~Received 23 July 2000; published 26 February 2001!

We present a generalization of the persistent random-walk model in which the step at timen depends on the
state of the step at timen2T, for arbitraryT. This gives rise to arbitrarily long memory effects, yet by an
appropriate transformation the model is tractable by essentially the same techniques applicable to the usual
persistent random-walk problem. We apply our results to the specific case of delayed ‘‘step’’ persistence, and
analyze its asymptotic statistical properties.
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Non-Markovian random processes@1,2# have proven to be
very valuable models in a wide variety of applications@3#.
Yet, in most instances, these models must be tackled num
cally. Analytical treatments are rare and usually involve
phisticated mathematics. Here we present, however, an
ample of a process with arbitrarily long memory that can
handled with a relatively simple formalism and whose ch
acteristic function can be written in closed form. The proc
under consideration is a generalization of the persistent
dom walk~PRW!. In the normal PRW model, the probabilit
distribution for the direction of thenth step depends on th
direction of the (n21)th step@4#. We generalize the mode
by assigning a ‘‘state’’ variable to each step, and assum
that the probability distribution for thenth step depends on
the state of the (n2T)th step, for arbitraryT. We will refer
to this process as the ‘‘random walk with delayed state p
sistence’’ ~RWDSP!. We apply our results to a particula
realization of this model that has been studied in the con
of delayed systems as an example of a system exhib
stochastic resonance@5#. Other systems with delay are o
current interest in a variety of fields, e.g., bistable syste
@6#, coupled oscillators@7#, traffic models@8#, neural net-
works @9#, and so on. The common feature in these examp
is the enrichment of their otherwise simple behaviors by
inclusion~usually justified by the finite speed of signal tran
mission between the elements of the system! of time delay
@10#.

The general statement of the RWDSP is as follows.
define the stateS(n) of the walker at thenth step as a labe
function that can take the values61. We denote asf( l )1

andf( l )2 the step distributions corresponding to each st
of the walker. Then, given a set ofT initial steps~with their
corresponding state labels!, we allow the state of the walke
to evolve according to the following transition probabilitie

p~StuSt2T!5 1
2 ~11St«!, St2T511;

~1!

p~StuSt2T!5 1
2 ~12St«8!, St2T521.

Once the state of the walker at thenth time step is deter-
mined, thenth step is chosen from the corresponding s
distribution.
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The transition probabilities given in Eq.~1!, which are the
most general for this problem, are completely defined by
‘‘persistence parameters’’«, «8 and the ‘‘delay parameter’’
T. Clearly, if «5«850, all memory effects are lost and w
recover a Markovian random walk with step distributio
given byF( l )5 1

2 @f1( l )1f2( l )#.
It should be noticed that, given the way the process

been defined, the persistence occurs within the states o
random walker and it will be reflected in the actual motion
the walker through the choice of step distributions cor
sponding to each state. If, for example, the step distributi
are equal, i.e.,f1( l )5f2( l ), then the persistence effec
within the states of the walker are irrelevant for its motio
for any values of the persistence and delay parameters,
the motion reduces, once again, to a Markovian rand
walk.

The model also reduces to the usual~symmetric! PRW if
we choose«5«8Þ0, the step distributions asf6( l )5d( l
71), and the delay asT51. This choice of step distribu
tions allows the identification of the state with the actu
step, thus the persistence among states carries over dir
to persistence among steps. Under the same choice of
distributions, we can choose values ofT.1, to yield gener-
alized, arbitrarily delayed, random walks with persisten
among steps. We will study this case in more detail belo

If either «51 or «851, but not both, then the pureS
51 or S521 state becomes absorbing, and the process e
up in the corresponding state after a finite number of st
with probability 1. Thereafter, the process becomes equ
lent to a Markovian random walk with step distribution co
responding to that of the absorbing state.

The case of extreme persistence is achieved when«5«8
51. In this case we obtain perfectly periodic behavior in t
states of the walker, with periodT.

The usual approach to deal with finite-memory rando
walks is to pose them as a Markovian ‘‘multistate rando
walk’’ @4#. For the case at hand, this would require defini
as ‘‘states’’ every possible combination ofT11 labels, and
computing the appropriate transfer matrices among th
The analytical solution of the system involves manipulatio
of 2T1132T11 matrices, a formidable task if we wish to tak
T arbitrarily large. Thus, we take a different approach.

The quantity of interest is the probability distribution fo
the position of the walker aftert steps. To compute this
quantity, we make the construction shown in Fig. 1. In t

figure we have placed the state labels of the initialT steps in
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ARTURO BERRONES AND HERNA´ N LARRALDE PHYSICAL REVIEW E 63 031109
the bottom row, the nextT steps on the second row, and
on. N is the integer part oft/T andq is defined through the
relation t5NT1q. The position of the walker at timet is
equal to the sum of all the individual steps taken betwe
time 0 and timet. Obviously, this sum can be carried out
any order; in particular, we choose to add column by c
umn. The idea is that, by construction, each step is over
step that preceded itT time steps before, which is precise
the step on which the transition matrix depends.

Thus, viewed as stochastic processes, the sums over
column are independent, unit delay, generalized persis
random walks. The total sum is therefore the sum ofT inde-
pendent generalized persistent random walks,q of which
have givenN11 steps, andT2q have givenN steps~these
processes are generalizations of the usual PRW in the s
that the persistence is, once again, within the states of
walker, and these states determine the step distribution!. The
distribution of the sum is simply the convolution of the pro
ability distributions of these generalized persistent rand
walks. It is also clear that since this problem has memory
determine the solution,T ‘‘initial’’ conditions must be speci-
fied, namely the first row of steps~actually, one must also
specify the initial position of the walker, but we will alway

FIG. 1. Construction for evaluating the position of the RWDS
as the sum ofT independent generalized random walks,q of which
have givenN11 steps,T2q have givenN steps. Note that the stat
of each step depends precisely on the state that is below it in
construction.
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assume this to be zero!. Each of these initial steps serves
the initial condition for the process that lies above them
the rearrangement we have made. Strictly speaking, the
sulting probability distribution will, therefore, be a functio
of all the initial conditions, but in the following we will omit
the specific dependence in order to avoid a cumbersome
tation. Thus, we writePt(x) to denote the probability of
finding the walker atx aftert steps, for a given configuration
of the initial T states. In view of the discussion above, if th
initial states are independent identically distributed variab
the characteristic function associated withPt(x) will be
given by

P̂t~u!5 p̂NT1q~u!5@ p̂N11~u!#q@ p̂N~u!#T2q, ~2!

wherep̂N(u) is the characteristic function of theN-step, unit
delay, generalized persistent random walk, which can
evaluated by a simple adaptation of the technique to d
with the usual PRW@4#: We defineaN(x) as the probability
of finding this walker at positionx at stepN, having reached
the site from a step taken in the stateS(N21)51, and
bN(x) as the probability of finding the walker at positionx at
stepN, having reached the site from a step taken in the s
S(N21)521. The characteristic functions for these qua
tities satisfy the following coupled recursion relations

âN~u!5gâN21~u!f̂1~u!1mb̂N21~u!f̂1~u!, ~3!

b̂N~u!5g8b̂N21~u!f̂2~u!1m8âN21~u!f̂2~u!, ~4!

where the constantsg, g8,m, andm8 are given in terms of
the persistence parameters through

g[ 1
2 ~11«!, m[ 1

2 ~12«8!,
~5!

g8[ 1
2 ~11«8!, m8[ 1

2 ~12«!.

Solving the above recursion relations, the general form
p̂N(u)5âN1b̂N may be written as

p̂N~u!5A f̂1
N ~u!1B f̂2

N ~u!, ~6!

where

is
f̂ 65 1
4 $@f̂1~u!1f̂2~u!#1@«f̂1~u!1«8f̂2~u!#%

6 1
2A 1

4 $@f̂1~u!1f̂2~u!#1@«f̂1~u!1«8f̂2~u!#%222f̂1~u!f̂2~u!~«1«8!. ~7!
The parametersA and B must be determined from initia
conditions. To determine the initial conditions, we recall th
these generalized, unit delay, persistent random walks w
introduced to evaluate sums of steps, which when added
the total displacement of the RWDSP, thus their initial va
must be zero. The second condition is given by the choic
states of the firstT steps of the RWDSP: denoting byp(s)
the probability distribution for the state labels of the initialT
t
re
ve
e
of

steps, then the required condition will be given byp1(x)
5p(1)f1(x)1p(21)f2(x). With these initial condi-
tions, the parametersA andB are given by

A5
f̂ 2~u!2 p̂1~u!

f̂ 2~u!2 f̂ 1~u!
, B5

p̂1~u!2 f̂ 1~u!

f̂ 2~u!2 f̂ 1~u!
. ~8!
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SIMPLE MODEL OF A RANDOM WALK WITH . . . PHYSICAL REVIEW E63 031109
Relations~6!, ~7!, and~8! together with formula~2! give us
the exact characteristic function associated withPt(x).

As an example of the application of the above formalis
in what follows we determine the transport properties o
random walk with delayedstep persistence. In the norma
persistent random-walk model, the probability distributi
for the direction of thenth step depends on the direction
the (n21)th step~all steps are of unit length!. We apply the
above formalism to analyze the case in which the probab
distribution for the direction of thenth step depends on th
direction of the (n2T)th step, for arbitraryT. Essentially the
same model was introduced in the context of delayed s
tems as an example of a system exhibiting stochastic r
nance@5#. Our principal interest will be the determination o
the asymptotic transport properties of the process.

As mentioned earlier, to describe this process we cho
the step distributions asf65d(x71). For the distribution
of the initial T steps, we will focus on the random symmetr
case, which corresponds to the situation in which the wa
initially performs a T-step unbiased ‘‘drunkard’s’’ walk;
other cases can be treated in exactly the same fashion. T
we have

p̂051, p̂15cosu. ~9!

The starting point to examine the transport properties of
model will be the characteristic function~2!, whose loga-
rithm can be written as

ln P̂t~u!5~T2q!ln p̂N~u!1q ln p̂N11~u!. ~10!

Expanding Eq.~10! in successive powers ofu, we obtain the
cumulant expansion for the problem. Since this process te
to the sum ofT independent identically distributed variable
with finite variance, the central limit theorem applies and
distribution tends to a Gaussian. Thus, to analyze
asymptotic behavior of the process at largeT andN, we only
require the terms up to quadratic order inu. Substituting the
expansion ofp̂N(u) in Eq. ~10!, we find

^x&52
b

~12a!2
@T~12aN!1qaN~12a!#

1~NT1q!
b

~12a!
~11!

and

^x2&2^x&25
b2

~12a!4
$2T~12aN!21q@~12aN!2

2~12aN11!2#%2
2

~12a!2 Fa2
b2

~12a!2G
3$T~12aN!1q@~12aN11!2~12aN!#%

1~NT1q!S 11a

12a D S 12
b2

~12a!2D , ~12!
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where

a5 1
2 ~«1«8!, b5 1

2 ~«2«8!. ~13!

The evolution of the first moment for this particular proce
presents the following features. First of all, as expect
whenN50, ^x&50 as a consequence of the symmetry of t
initial conditions. This initial behavior persists for a tim
tc;T/(12a) asa→1. After this time has elapsed, the dri
in the system takes over, yielding

^x&.
b

~12a! Ft2
T

~12a!G . ~14!

For the description of the behavior of the variance e
pressed in Eq.~12!, we distinguish the following cases.

Case (i). uau,1: In this case for timest@T the
asymptotic behavior ofs25^x2&2^x&2 is diffusive in t,
plus a constant correction term induced by the persistenc
the dispersion in the initial conditions

st
2.

~11a!

~12a!3
@~12a!22b2!] t1F b2

~12a!4
2

2a

~12a!2GT.

~15!

If either «51 or «851, thenb25(12a)2 and the diffu-
sive term vanishes identically, leaving only the constant te
as the long-time limit for the variance. As mentioned abo
in this situation either the left-moving or right-moving sta
is absorbing and the variance reflects the fluctuations of
process before entering the absorbing state. On the o
hand, forT,t,tc , the variance shows transient effects d
to the persistence of the behavior of the initial condition
The behavior during this transient period resembles tha
the perfect-memory case (a51), which is ballistic, as dis-
cussed below. Finally, given the initial conditions we a
considering, whent;T, s2 is that of an ordinary random

FIG. 2. s2 vs t in a system withT520 and«5«850.95. A
nondiffusive regime is observed for times betweenT and tc.400
followed by a slow return to diffusive behavior. The intermedia
regime has a slope;2.
9-3
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ARTURO BERRONES AND HERNA´ N LARRALDE PHYSICAL REVIEW E 63 031109
walk over the initial period (N50). In Fig. 2, we show the
various behaviors of the variance for the case in whicha
50.95, b50, andT520. This sequence of behaviors giv
rise to a nonmonotonic behavior of the diffusion coefficie
D5s2/t when bÞ0. In Fig. 3, we show an example wit
T510, «50.95, and«851. There is a maximum value o
the diffusion coefficient as a function oft, which occurs at
t;tc . This maximum resembles the behavior of syste
that exhibit the phenomenon of stochastic resonance@5#, yet
in this case it is due to the persistence of the fluctuation
initial conditions, combined with the boundedness of t
variance at long times. Another type of nonmonotonic b
havior of the diffusion coefficient occurs whena is near
21; this situation is discussed in case~iii !.

Case (ii). a51: In this case,tc→` and the process is
nondiffusive for allt.T. This case corresponds to a drun
ard’s walk on a one-dimensional lattice with discrete tim
steps, which repeats exactly the same sequence of step
ery T time units. Then, after the first period, the proce
becomes deterministic. This process actually occurs w
using random number generators, where after a presum
large periodT, the series repeats itself. To analyze this lim
we definel[12a and expands2 in the neighborhood of
l50 up to orderl2. This procedure yields

s25N2T12Nq1q;N2T when T,N@1. ~16!

In terms oft, we may rewrite the expression above as

s2;
t2

T
, ~17!

which shows that for finiteT, the motion becomes essential
ballistic in the long-time limit. This result is easy to unde

FIG. 3. Diffusion coefficient vs time for a system with«
50.95,«851, andT510. A maximum resembling those observe
in stochastic resonance is observed att;tc;400.
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stand given the fact that the initial condition is a norm
unbiased,T-step random walk. AfterT steps, this initial ran-
dom walk will have a mean-square displacement equal toT.
The a51 process will then repeat exactly the same st
every period, giving rise to the same displacement at the
of each period; this results in the ballistic behavior predic
in Eq. ~17!.

Case (iii). a521: This limit corresponds to a drunkard’
walk on a one-dimensional lattice with discrete time ste
that repeats exactly the same sequence of steps with opp
signs everyT time units. This results in periodic motion wit
period 2T. Thus, the variance remains bounded and it m
be written as

s25 1
2 @T2~21!N~T22q!#. ~18!

For values ofa near 21, this periodicity is again re-
flected in a transient regime for the diffusion coefficient
which it is nonmonotonic over the range of timesT,t
,tc . D oscillates with maxima every two periods and re
tive amplitude decaying as time goes by. Fort.tc , D tends
to a constant.

In summary, we present a simple generalization of
persistent random-walk model by considering arbitrarily d
layed persistence among the states of a random walker,
assigning a step distribution to each state. We show how
calculate the probability distribution function for the positio
of this ‘‘random walk with delayed state persistence’’ b
recasting it as the sum ofT unit delay independent random
processes. As an example, we study the transport prope
of the random walk with delayed step persistence, for wh
we find that the distribution of positions tends asymptotica
to a Gaussian distribution and obtain exact expressions
the transport coefficients of the model.

Aside from other applications of this model, tailored
specific physical systems, extensions to situations in wh
the state of the walker at stept depends on the states of th
walker at stepst2T and t22T can be treated following
essentially the same procedure. Interestingly, the proce
breaks down completely if we consider delaysT and 2T
11. This breakdown could be expected to manifest itsel
the statistical properties of the process from the fact tha
the large-T limit, there appears to be no way to express t
position as a sum ofT, short memory, independent rando
variables. On the other hand, on intuitive grounds, it is n
clear how a process that depends on its states 28 763
57 526 steps ago will differ in its statistical features from o
that depends on its states 28 763 and 57 527 steps ago.
question is presently under study.
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