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Simple model of a random walk with arbitrarily long memory
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We present a generalization of the persistent random-walk model in which the step atd@pends on the
state of the step at time—T, for arbitrary T. This gives rise to arbitrarily long memory effects, yet by an
appropriate transformation the model is tractable by essentially the same techniques applicable to the usual
persistent random-walk problem. We apply our results to the specific case of delayed “step” persistence, and
analyze its asymptotic statistical properties.

DOI: 10.1103/PhysRevE.63.031109 PACS nuni)er05.40.Fb

Non-Markovian random processis2| have proven to be The transition probabilities given in E¢L), which are the
very valuable models in a wide variety of applicatidi®d. = most general for this problem, are completely defined by the
Yet, in most instances, these models must be tackled numeripersistence parameterst, ¢’ and the “delay parameter”
cally. Analytical treatments are rare and usually involve so-T. Clearly, ife=¢"=0, all memory effects are lost and we
phisticated mathematics. Here we present, however, an execover a Markovian random walk with step distribution
ample of a process with arbitrarily long memory that can begiven by®()=3[¢"(1)+ ¢ (1)].
handled with a relatively simple formalism and whose char- It should be noticed that, given the way the process has
acteristic function can be written in closed form. The proces®€en defined, the persistence occurs within the states of the
under consideration is a generalization of the persistent rafandom walker and it will be reflected in the actual motion of
dom walk(PRW). In the normal PRW model, the probability the ngker through the choice of step d|str|but|qns_ corre-
distribution for the direction of theth step depends on the SPONding to each state. If, for example, the step distributions

g o ;
direction of the —1)th step[4]. We generalize the model 2r€ €qual, i.e.4(1)=¢ (1), then the persistence effects
by assigning a “state” variable to each step, and assuminw'thm the states of the walker are irrelevant for its motion,

R Sor any values of the persistence and delay parameters, and
that the probability distribution for theth step depends ON the motion reduces, once again, to a Markovian random
the state of ther{(—T)th step, for arbitraryl. We will refer

to this p[,ocess as the “random walk with delayed state per- THe model also reduces to the us@mmetri¢ PRW if
sistence” (RWDSP. We apply our results to a particular e chooses=¢'+0, the step distributions aé* (1) = &(I
realization of this model that has been studied in the context- 1) and the delay a3 =1. This choice of step distribu-
of delayed systems as an example of a system exhibitinfions allows the identification of the state with the actual
stochastic resonand®]. Other systems with delay are of step, thus the persistence among states carries over directly
current interest in a variety of fields, e.g., bistable systemso persistence among steps. Under the same choice of step
[6], coupled oscillatorg7], traffic models[8], neural net-  distributions, we can choose valuesTof 1, to yield gener-
works[9], and so on. The common feature in these examplealized, arbitrarily delayed, random walks with persistence
is the enrichment of their otherwise simple behaviors by theamong steps. We will study this case in more detail below.
inclusion(usually justified by the finite speed of signal trans-  If either e=1 or ¢’=1, but not both, then the pur®
mission between the elements of the systefitime delay =1 orS=—1 state becomes absorbing, and the process ends
[10]. up in the corresponding state after a finite number of steps
The general statement of the RWDSP is as follows. Wewith probability 1. Thereafter, the process becomes equiva-
define the stat&(n) of the walker at thenth step as a label lent to a Markovian random walk with step distribution cor-
function that can take the valuesl. We denote ag(l)*  responding to that of the absorbing state. ,
and (1)~ the step distributions corresponding to each state 1he case of extreme persistence is achieved when
of the walker. Then, given a set @finitial steps(with their 1. In this case we ob_tam pe_rfectly periodic behavior in the
corresponding state labglsve allow the state of the walker States of the walker, with periot

to evolve according to the following transition probabilities: The' usual approach to deal wnh_ﬂm’gg-mgmory random
walks is to pose them as a Markovian “multistate random

walk” [4]. For the case at hand, this would require defining

P(SS,71)=3(1+Se), S,.7=+1; as “states” every possible combination ®f+ 1 labels, and
(1) computing the appropriate transfer matrices among them.
PSS, )=1(1-Se'), S._;=-1. The analytical solution of the system involves manipulations

of 2T"1x 2T*1 matrices, a formidable task if we wish to take
T arbitrarily large. Thus, we take a different approach.

‘Once the state of the walker at théh time step is deter-  The quantity of interest is the probability distribution for
mined, thenth step is chosen from the corresponding stepthe position of the walker after steps. To compute this
distribution. quantity, we make the construction shown in Fig. 1. In the

figure we have placed the state labels of the inifiateps in
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assume this to be zerdEach of these initial steps serves as
N=[T/T] |siNT+1) | =ssse gNT4g) the initial condition for the process that lies above them in
the rearrangement we have made. Strictly speaking, the re-
sulting probability distribution will, therefore, be a function

of all the initial conditions, but in the following we will omit

the specific dependence in order to avoid a cumbersome no-
N=2|s@r1) | sers2) S@43) | weee s@3M tation. Thus, we writeP (x) to denote the probability of
finding the walker ak after = steps, for a given configuration
N=1| ST+1) | S(Ts2) ST43) | weres s@m of the initial T states. In view of the discussion above, if the
initial states are independent identically distributed variables,

N=0 the characteristic function associated wi(x) will be
- S(1) S(2) S(3) | weene S(M) given by

FIG. 1. Construction for evaluating the position of the RWDSP IsT( 0)= [SNT+ q(0) =[}3N+1( 0)]“[[3,\,( 6)1" 9, 2
as the sum of independent generalized random walggf which R
have giverN+ 1 stepsT —q have giverN steps. Note that the state wherepy(6) is the characteristic function of thé-step, unit
of each step depends precisely on the state that is below it in thidelay, generalized persistent random walk, which can be
construction. evaluated by a simple adaptation of the technique to deal

with the usual PRW4]: We defineay(x) as the probability

the bottom row, the next steps on the second row, and so of finding this walker at positiox at stepN, having reached
on. N is the integer part of/T andq is defined through the the site from a step taken in the stes#¢N—1)=1, and
relation 7=NT+q. The position of the walker at time is  by(x) as the probability of finding the walker at positimat
equal to the sum of all the individual steps taken betweerstepN, having reached the site from a step taken in the state
time O and timer. Obviously, this sum can be carried outin S(N—1)=—1. The characteristic functions for these quan-
any order; in particular, we choose to add column by col+ities satisfy the following coupled recursion relations
umn. The idea is that, by construction, each step is over the
step that preceded T time steps before, which is precisely an(0)=van_1(0)dT(0)+uby_1(0)dT(6), (3
the step on which the transition matrix depends.

Thus, viewed as stochastic processes, the sums over each by (6)=y'by_1(0)d () +u'an_1(0)d(6), (4
column are independent, unit delay, generalized persistent
random walks. The total sum is therefore the surT aide- ~ Where the constantg, y’,u, andu’ are given in terms of
pendent generalized persistent random watksf which  the persistence parameters through
have givenN+ 1 steps, and —q have givenN steps(these 1 4 ,
processes are generalizations of the usual PRW in the sense y=2(lte), u=z(1-e"),
that the persistence is, once again, within the states of the '=1(1+s") '=1(1-¢)
walker, and these states determine the step distribufidre [ ro BT '
dibs.:.ribu(;i.on_(t))f the SUI”? iiSimDW the f3|9ﬂ\:jO|Uti0f_1 of the ngb- Solving the above recursion relations, the general form of
ability distributions of these generalized persistent rando —a 4B ;
walks. It is also clear that since this problem has memory, @N(a) an+ by may be written as
determine the solutiorT, “initial” conditions must be speci- pn(0) =AY (6)+BTN(0), (6)
fied, namely the first row of step@ctually, one must also
specify the initial position of the walker, but we will always where

©)

fo=H[o (O)+d (0)]+[ed () +e'd (O]}
+IHIB(0)+ b (0)]+[ed ™ (0)+e' b (0)]12—2d"(0)d (0)(e+e"). (7)

The parameterg\ and B must be determined from initial steps, then the required condition will be given py(x)
conditions. To determine the initial conditions, we recall that=7(1)¢™* (x)+ 7(—1)¢ (X). With these initial condi-
these generalized, unit delay, persistent random walks wefgyns, the parameters andB are given by
introduced to evaluate sums of steps, which when added give

the total displacement of the RWDSP, thus their initial value

must be zero. The second condition is given by the choice of 2 A A 2
states of the firsT steps of the RWDSP: denoting by(s) A= M B= M
the probability distribution for the state labels of the iniffal f_(0)—f.(0) f_(6)—1,(0)

®
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Relations(6), (7), and(8) together with formula2) give us 1000000 ‘ - ' .
the exact characteristic function associated i#Atlix).

As an example of the application of the above formalism,
in what follows we determine the transport properties of a
random walk with delayedtep persistence. In the normal
persistent random-walk model, the probability distribution
for the direction of thenth step depends on the direction of
the (n—1)th step(all steps are of unit lengihWe apply the
above formalism to analyze the case in which the probability
distribution for the direction of thath step depends on the 100 |
direction of the 6 — T)th step, for arbitrary. Essentially the
same model was introduced in the context of delayed sys:
tems as an example of a system exhibiting stochastic resa
nance{5]. Our principal interest will be the determination of ; ‘ . . .
the asymptotic transport properties of the process. 1 10 100 1000 10000 100000

As mentioned earlier, to describe this process we choose T
the step distributions ag™ = 5(x+ 1). For the distribution FIG. 2. o2 vs 7 in a system withT=20 ands=s’=0.95. A
of the initial T steps, we will focus on the random symmetric nongiffusive regime is observed for times betwéeand 7,~400
case, which corresponds to the situation in which the walkefollowed by a slow return to diffusive behavior. The intermediate
initially performs a T-step unbiased “drunkard’s” walk; regime has a slope 2.
other cases can be treated in exactly the same fashion. Thus,
we have where

10000 |

variance

Po=1, p,=cosé. (9) a=(e+e’), B=3i(e—¢g"). (13

The starting point to examine the transport properties of thehe evolution of the first moment for this particular process

model will be the characteristic functiof2), whose loga- presents the following features. First of all, as expected,

rithm can be written as whenN=0, (x)=0 as a consequence of the symmetry of the
initial conditions. This initial behavior persists for a time

INP(6)=(T—q)INpn(6)+qinpys1(6). (100  7c~T/(1— ) asa— 1. After this time has elapsed, the drift

in the system takes over, yielding

Expanding Eq(10) in successive powers &f, we obtain the

cumulant expansion for the problem. Since this process tends B

to the sum ofT independent identically distributed variables (x)= (1-a)

with finite variance, the central limit theorem applies and its

distribution tends to a Gaussian. Thus, to analyze the For the description of the behavior of the variance ex-

asymptotic behavior of the process at lafigandN, we only  pressed in Eq(12), we distinguish the following cases.

require the terms up to quadratic orderéinSubstituting the Case (i) |a|<1: In this case for timesr>T the

expansion ofy(6) in Eq. (10), we find asymptotic behavior ofr?=(x%)—(x)? is diffusive in r,

plus a constant correction term induced by the persistence of

the dispersion in the initial conditions

.
T (1-a)

. (14)

(X)=— 1_'8 2[T(l—aN)+an(l—a)]
e W) 1w gryges| P 22 g
= —a) — T -
(11) T (1-a)® (1-a)* (1-a)?

(1-a) (15

2

+(NT+0q)

and If eithere=1 ore’=1, theng?=(1— a)? and the diffu-
sive term vanishes identically, leaving only the constant term
2 N2 N2 as the long-time limit for the variance. As mentioned above,
(l_a)4{—T(1—a ) +ql(1—a™) in this situation either the left-moving or right-moving state
is absorbing and the variance reflects the fluctuations of the
process before entering the absorbing state. On the other
1-a)? hand, forT< r< 7., the variance shows transient effects due
to the persistence of the behavior of the initial conditions.
X{T(1=aM+q[(1—-aM*h) —(1-a™]} The behavior during this transient period resembles that of
5 the perfect-memory casexE& 1), which is ballistic, as dis-
F(NT+ )(1+a - B ) (12 cussed below. Finally, given the initial conditions we are
q 1- (1—a)?)’ considering, whenr~T, o2 is that of an ordinary random

()= (x)?=

BZ
YT (1-a)?

(1=

031109-3



ARTURO BERRONES AND HERNAI LARRALDE PHYSICAL REVIEW E 63 031109

20 . stand given the fact that the initial condition is a normal,
unbiased;T-step random walk. AfteT steps, this initial ran-
dom walk will have a mean-square displacement equal to
The a=1 process will then repeat exactly the same steps
every period, giving rise to the same displacement at the end
of each period; this results in the ballistic behavior predicted
in Eq. (17).

Case (iii) a=—1: This limit corresponds to a drunkard’s
walk on a one-dimensional lattice with discrete time steps
that repeats exactly the same sequence of steps with opposite
signs everyT time units. This results in periodic motion with
period 2T. Thus, the variance remains bounded and it may
be written as

15

0 1

0 1000 29'80 3000 4000 o?=3[T—(-1)N(T-2q)]. (18)

FIG. 3. Diffusion coefficient vs time for a system with
=0.95,¢'=1, andT=10. A maximum resembling those observed
in stochastic resonance is observed-atr.~400.

For values ofa near —1, this periodicity is again re-
flected in a transient regime for the diffusion coefficient in
which it is nonmonotonic over the range of tim@s<r

walk over the initial period i=0). In Fig. 2, we show the <7c- D oscillates with maxima every two periods and rela-
various behaviors of the variance for the case in which tive amplitude decaying as time goes by. For 7., D tends
=0.95, =0, andT=20. This sequence of behaviors gives 0 & constant. _ o
fise to a nonmonotonic behavior of the diffusion coefficient, N Summary, we present a simple generalization of the
D=02/7 when 8#0. In Fig. 3, we show an example with persistent random-walk model by considering arbitrarily de-
T=10 £=0.95 ande’=1. There is a maximum value of layed persistence among the states of a random walker, and
the diffusion coefficient as a function of which occurs at 2SSigning a step distribution to each state. We show how to
7~ . This maximum resembles the behavior of Systemscalculate the probability distribution function for the position
..

that exhibit the phenomenon of stochastic resongkeyet  ©f this “random walk with delayed state persistence™ by

in this case it is due to the persistence of the fluctuations ofecasting it as the sum df unit delay independent random
initial conditions, combined with the boundedness of thePrOCesses. As an example, we study the transport properties

variance at long times. Another type of nonmonotonic peOf the random walk with delayed step persistence, for which

havior of the diffusion coefficient occurs when is near e find that the distribution of positions tends asymptotically
—1: this situation is discussed in caéi) to a Gaussian distribution and obtain exact expressions for

Case (ii) a=1: In this case,.— and the process is the transport coefficients of the model. :
nondiffusive for all7>T. This case corresponds to a drunk- A§|Qe fm"? other applications pf this m.odel., tallqred tp
ard’s walk on a one-dimensional lattice with discrete timeSpeCIfIC physical systems, extensions to situations in which
steps, which repeats exactly the same sequence of steps éU? state of the walker at stepdepends on the states OT the
ery T time units. Then, after the first period, the process""""lker_at stepsr—T and 7—2T can be t_reated following
becomes deterministic. This process actually occurs whe ssentially the same proc_edure. Inte_restmgly, the procedure
using random number generators, where after a presumabf€aks down completely if we consider delaysand 2
large periodT, the series repeats itself. To analyze this limit, 1 This breakdown could be expected to manifest itself in
we definex=1—a and expandr? in the neighborhood of the stausucgl .propert|es of the process from the fact that in
A=0 up to orden\2. This procedure yields the largeT limit, there appears to be no way to express the

position as a sum of, short memory, independent random
d?=N?T+2Ng+q~N?T when T,N>1. (16  variables. On the other hand, on intuitive grounds, it is not
clear how a process that depends on its states 28 763 and
In terms of7, we may rewrite the expression above as 57 526 steps ago will differ in its statistical features from one
that depends on its states 28 763 and 57 527 steps ago. This
02— (17) question is presently under study.

A.B. acknowledges financial support by CONACYT,;
which shows that for finitd, the motion becomes essentially H.L. acknowledges partial support by CONACYT and
ballistic in the long-time limit. This result is easy to under- DGAPA UNAM.
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